
Acta Cryst. (1999). A55, 508±511

Quasiperiodic patterns generated by mixing lattices derived from a dodecahedral star and an
icosahedral star

T. Somaa,b* and Y. Watanabec

aJapan Science and Technology Corporation, 4-1-8 Honcho, Kawaguchi-shi, Saitama 332, Japan, bDepartment of
Mathematics and Computing Science, The University of the South Paci®c, Suva, Fiji, and cDepartment of Information
Systems, Teikyo Heisei University, 2289 Uruido, Ichihara, Chiba 290-0193, Japan. E-mail: soma_t@manu.usp.ac.fj

(Received 23 June 1997; accepted 23 October 1998 )

Abstract

A 3D quasiperiodic pattern by projection from an nD
lattice can be de®ned by an orthonormal n � n lattice
matrix which produces basis vectors in pattern space
with a prescribed arrangement and basis vectors in
perpendicular or test space satisfying the quasicrystallo-
graphic condition. A 16 � 16 lattice matrix is derived
which produces basis vectors in pattern space as a
combination or mixing of dually positioned dodecahe-
dral star and icosahedral star. It is shown that the mixed
star constitutes a eutactic star. Since the module
generated by the mixed eutactic star is totally irrational,
patterns generated by projection using the lattice matrix
are quasicrystallographic and the equilateral pattern is
generated for 1 : 1 mixing.

1. Introduction

In a previous paper (Soma & Watanabe, 1992), modi®-
cations of Beenker's pattern were discussed in terms of
rotation of pattern and test space with respect to 4D
lattice space. It is pointed out that Beenker's pattern can
be regarded as a combination or a mixing of two square
lattices of equal length with �=4 rotational separation.
One of the modi®cations discussed is a change in size of
two square lattices, keeping the rotational separation
®xed as �=4. Beenker's pattern is a special case of this
with 1:1 mixing. It is shown that by changing the mixing
ratio both the periodic and quasicrystallographic
patterns are generated. Similar treatment is performed
by Duneau (1991). It should be pointed out that the
mixing is not restricted to two lattices and it can also be
extended to the 3D case (Soma & Watanabe, 1997,
1998). Baake et al. (1991, 1993) formulate the mixing as
a Schul rotation and treat both 2D and 3D cases.

In this paper, the mixing of two lattices is discussed in
x2; in x3, lattice matrices for lattices derived from a
dodecahedral star and an icosahedral star are given in
the form discussed in x4; and, in x4, the mixing of these
lattices is discussed giving a 16 � 16 lattice matrix.

2. Mixing of two lattices

A 1D pattern or tiling by cut-and-project method (Katz
& Duneau, 1986) from a 2D lattice is de®ned by speci-
fying two 1 � 2 projection matrices; one specifying the
projection from the lattice to pattern space de®ning
the basis vectors and a unit pattern or the projection of a
unit square to pattern space; the other specifying the
projection from the lattice to test space de®ning the
basis vectors and a test window or the projection of a
unit square to test space. Combining these two matrices
row-wise, we obtain

A2��� � cos � sin �
ÿ sin � cos �

� �
; �1�

where � is the angle between the x axis and the 1D
pattern axis (space). This matrix is an orthonormal
matrix on 2D space. Since its columns form the basis of a
lattice that projects to the corresponding modules in
pattern and test space, we call it a lattice matrix. It should
be pointed out that the modi®cation of basis vectors in
pattern space can be realized as a rotation of pattern and
test space with respect to the original lattice.

It is interesting to note that this 1D pattern by two
prototiles can be regarded as a mixing of two 1D lattices
of different sizes. Rewriting (1) as

A2�r� �
1

�1� r2�1=2

1 r

ÿr 1

� �
; �2�

where r � tan �, the pattern generated by this lattice
matrix is a mixing of 1D lattices of sizes 1 and r, where r
is the mixing ratio, the ratio of the lengths of the basis
vectors of two lattices. Quasicrystallographic patterns
are generated if the basis vectors in test space are lin-
early independent over the rational number, i.e. r is
irrational, and periodic or crystallographic patterns if r is
rational.

It should be pointed out that the ®rst row vector in (2)
is a special case of more general row vector of a k 1D
eutactic star as
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1

1�Pk
i�2 r2

i

ÿ �1=2
1 r2 r3 . . . rk

ÿ �
; �3�

where ri is the length of stars with the ®rst one as a unit
or the mixing ratio of respective stars with respect to the
®rst one, and they can be lifted to an orthogonal frame
of kD space (Senechal, 1995), that is, the existence of
lattice matrix for projection from kD space is guaran-
teed. For a k nD eutactic star, the mixed star is given by
a matrix B with mixing parameters �i as

B � B1 �2B2 �3B3 . . . �kBk

ÿ �
; �4�

where Bi is an n�mi matrix whose column vectors
represent an nD 2mi star. Assuming

BiB
T
i � In; �5�

where In is the n� n identity matrix and BT
i is the

transpose of Bi, we have

BBT � 1�Pk
i�2

�2
i

� �
In; �6�

which shows that the mixed star is also a eutactic star
and they can be lifted to an orthogonal frame of mD
space where m �Pk

i�1 mi.

The simplest example for 2D mixing of 1D patterns of
two prototiles is to take a Cartesian product of two 1D
patterns allocating a 1D pattern to each vector of a star
of angle �=2 (Fig. 1a) (Pleasants, 1985). It is a mixing of
two square lattices of different sizes. The pattern
consists of three prototiles, two squares and a rectangle.
Generally, allocate the 1D pattern to each vector of a
star of angle �=n, n � 2; 3; . . . (Fig. 1). The case for
n � 3 is reported by Warrington et al. (1998), using a
dual of the Fibonacci-related Amman bar tri-grid
formulation. For 3D, allocate the 1D pattern to each
vector of tetrahedral, octahedral (Fig. 2), dodecahedral
and icosahedral stars. The cases in Fig. 2 are discussed by
Soma & Watanabe (1998).

Another example of mixing is to consider a 2n star
with angle �=n and divide vectors into two groups
selecting every other vector for each group, and mix the
two groups by multiplying by a factor � for one group
(Fig. 3). The case of an 8-star is considered by Baake et
al. (1991, 1993), Duneau (1991) and Soma & Watanabe
(1992). This case is regarded as a mixing of two
embedding 4-stars out of the 8-star. For 3D, consider the
star of a dual pair of regular polyhedral stars with a
factor � for one of the pair (Fig. 4); the pair of hexa-
hedral star and octahedral star is considered by Soma &
Watanabe (1997), and the pair of dodecahedral star and
icosahedral star is reported by Soma & Watanabe (1996)
and discussed in the following sections. The mixing of
embedding hexahedral stars of the dodecahedral star is
discussed by Baake et al. (1991, 1993).

3. Lattice matrices for a dodecahedral star and an
icosahedral star

A lattice matrix producing ten vectors from the center to
the vertices of a regular pentagonal dodecahedron in
pattern space described in Kramer & Haase (1989) and

Fig. 1. Examples of 2D mixing by allocating two 1D vectors to each of
the successive vectors of a 2n-star.

Fig. 2. Examples of 3D mixing by allocating two 1D vectors to vectors
of regular polyhedral stars.

Fig. 3. Examples of 2D mixing by allocating a 1D vector to successive n
vectors of a 2n-star with a mixing parameter multiplying every other
vector.
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Watanabe (1994) adopts the coordinate system such that
the coordinate �x; y; z� of one of the vertices of the
embedded cube is (1, 1, 1). For the discussion in the
following section, the matrix is reproduced here with the
change of coordinates as

A10 �
2

5�1� �2�
� �1=2

S �S

�� � 1�H �� ÿ 1�H
S0 �S0

�S ÿS

�S0 ÿS0

�� ÿ 1�H ÿ�� � 1�H

0BBBBBB@

1CCCCCCA; �7�

where

S � 1 cos � cos 2� cos 3� cos 4�
0 sin � sin 2� sin 3� sin 4�

� �
;

S0 � 1 cos 2� cos 4� cos � cos 3�
0 sin 2� sin 4� sin � sin 3�

� �
;

H � 1=2 1=2 1=2 1=2 1=2
ÿ �

;

� � �1� 51=2�=2 and � � 2�=5. The z axis is coincident
with one of the ®vefold axes and the x axis is parallel to
the line passing one of the vertices of a pentagonal face
from its center. It can be shown that the 3D column
vectors by the ®rst three rows constitute a eutactic star
(Fig. 4b).

The lattice matrix producing six vectors from the
center to the vertices of an icosahedron in pattern space
is given by Katz & Duneau (1986) and is reproduced
here as

A6 � �2=5�1=2

S Z

H 51=2=2

S0 Z

H ÿ51=2=2

0BB@
1CCA; �8�

where Z � �0 0�T, and the z axis is coincident with one
of the vectors and the x axis is in a plane de®ned by the
z-axis vector and one of its nearest vectors. As in the
previous case, it can be shown that the 3D column
vectors by the ®rst three rows constitute a eutactic star
(Fig. 4b).

4. Mixing a dodecahedral star and an icosahedral star

Consider 16 basis vectors in pattern space by mixing a
dodecahedral star of the ®rst three rows in (7) and an
icosahedral star of the ®rst three rows in (8). The
icosahedral star in (8) should be rotated through �
before mixing so that the two polyhedrons are in dual
position. Introducing the mixing parameter �, a 16 � 16
lattice matrix is obtained as

A16��� �
2

5�1� �2 � �2�
� �1=2

�

S �S ÿ�S Z

�� � 1�H �� ÿ 1�H �H 51=2�=2

S0 �S0 ÿ�S0 Z

�S ��2Dÿ 1�S ��DS Z

�S0 ��2Dÿ 1�S0 ��DS0 Z

�� ÿ 1�H ÿ�� � 1�H �H ÿ51=2�=2

ÿ�S ��DS ��2Dÿ 1�S Z

ÿ�S0 ��DS0 ��2Dÿ 1�S0 Z

�H �H ÿ�� ÿ 1�H ÿ51=2�� � 1�=2

�H ÿ�H ÿ�� � 1�H 51=2�� ÿ 1�=2

0BBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCA

;

�9�
where D is the root of a quadratic equation
��2 � �2�x2 ÿ 2xÿ 1 � 0.

It is shown that the unit pattern or the 16D unit cube
projected to pattern space is an enneacontahedron
truncated by a triacontahedron. The depth of truncation
varies as �, which can take any value �0;1�; an ennea-
contahedron is obtained when � is 0 and a triacontahe-
dron when � is in®nity. The mixing ratio, the ratio of the
length of a dodecahedral and an icosahedral vector, is
1 : 51=2�=�3�� � 2��1=2 and, for � � �3�� � 2�=5�1=2 or 1 : 1
mixing, an equilateral truncated rhombic enneaconta-
hedron (Watanabe & Betsumiya, 1992) is obtained
(Fig. 5). For � � 5�� � 1�=�3�� � 2��1=2, the icosahedral
star is in the lattice generated by the dodecahedral star
and vice versa for � � �� � 2�1=2=31=2�� � 1�. Since the
module generated by each star is totally irrational,
patterns generated by projection are quasicrystallo-
graphic for any values of �. By projection from a 16D
lattice using a lattice matrix with 1 : 1 mixing, an equi-
lateral 3D quasicrystallographic pattern is obtained

Fig. 4. Examples of 3D mixing by a dual pair of regular polyhedral
stars.
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(Fig. 6) with 16 different prototiles (®ve from the
combinations of dodecahedral vectors, two from those
of icosahedral vectors and nine from those of mixing of
the two). It is found that the 13D test polytope (the
projection of the 16D unit cube to test space) has 2628
faces.

5. Concluding remarks

The concept of mixing two lattices for generating a new
pattern is utilized to generate 3D quasiperiodic patterns
by mixing lattices derived from a pentagonal dodeca-
hedral star and an icosahedral star. It is interesting to
apply this concept to other cases or to extend the
concept to higher dimensions. Some of the examples
given in x2 having icosahedral symmetry could be a
model for clusters in quasicrystals having icosahedral
symmetry.
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Fig. 6. A 3D quasicrystallographic pattern or tiling generated
by the lattice matrix (9) with � � �3�� � 2�=5�1=2 and
D � �1� �1� �2 � �2�1=2�=��2 � �2�. The pattern is a part which is
generated by the projection of points f�xi�jxi � f0; 1gg in 16D lattice
space. The test polytope is positioned so that its center is at the
origin. The pattern consists of 16 different prototiles.

Fig. 5. A projection of a 16D unit cube to pattern space by the lattice
matrix (9) with � � �3�� � 2�=5�1=2 or 1 : 1 mixing; an equilateral
truncated rhombic enneacontahedron.


